

Digital ASIC Design Industry Panel Presentation

Gregory Ling Will Galles Jake Hafele Cade Breeding

Class: CPR E 492 Group: sddec23-06 Client/Advisor: Dr. Duwe Website: http://sddec23-06.sd.ece.iastate.edu/

Gregory Ling

Problem Statement Solution Requirements Users Market Survey

Problem Statement

The ability to create a custom digital ASIC (Application Specific Integrated Circuit) is often locked behind high barriers to entry and traditionally restricted to teams of industry professionals.

OpenMPW

- Multi-Project Wafer
- Skywater 130nm PDK
- OpenROAD
 - Yosys
 - Klayout
 - Magic
 - XSchem

Goals

Explore

Modular design to test different limits of the fabrication process

Learn

Expand the knowledge base of open-source fabrication at ISU

Bring-Up Plan

Create a plan for a future group to bring-up our fabricated design

Market Survey and Cost Estimate

Production Run

~\$1M for full ASIC

Multi-Project Wafer

- OpenMPW eFabless, open-source, funded by Google
- ChipIgnite eFabless, paid (\$9,750/project, 10mm², 4-5 months)
- Muse Semiconductor TSMC, paid (\$1,250/mm², 42 days)

Our Cost

- All design tools are open source
- Only real cost of the project is our time

Design Will Galles

Design Requirements Top Level Design Module Descriptions

Technical Design Requirements

- Create a modular design that would allow for a wide array of operations to take place
- Create a redundant system that would still be able to operate if there was a manufacturing failure
- Explore new technologies and processes that had not been explored by previous teams

Wishbone Test Module

Design

Purpose Test on chip communication buses

WISHBONE BUS

MGMT MICRO-CONTROLLER WISHBONE TEST MODULE

DSP Accelerator Module

Design

Purpose Utilize OpenRAM generated SRAM Implement a more complex design

Backdoor SPI Module

Design

Purpose Backup data bus in case of failure Test crossing clock domains

Clock Module

Design

Purpose Test multiple clock domains Backup clock in case of failure

Design

Purpose

Standard Cell & Custom Cell

Test Overview

Jake Hafele

Platforms Used Test Plan

15 | sddec23-06

Test Overview

Platforms Used

OpenROAD

RTL synthesis through GDS Layout

Magic

Custom cell layout

KLayout

Layout viewer

GTKWave Waveform viewer

Test Overview

Test Plan

pp. 36-39

Jake Hafele

Behavioral RTL Custom Cells SRAM

Overview

What is hardening?

- Provides compilation, synthesis, place and route, and signoff all in one package
- Generates hardened macros for submodules AND hardened top-level design
- **Different implementation techniques**
 - Behavioral Verilog
 - Custom Cell
 - SRAM

Behavioral RTL

- Define functionality of modules using Verilog
- "Common Case" for most designs
- Can be utilized for full design process

Used for:

- Standard Cell Test
- Backdoor SPI
- Wishbone Bus Test
- DSP Accelerator
- Custom Cell (functional verification only)
- Clock MUX (functional verification only)

Custom Cell

- Create custom cell for use in parallel with SkyWater 130nm PDK
- Utilize open-source tools and new process for team and users
- Used for:
 - Custom Cell (GL verification, hardening)
- **Unique Process:**
 - Magic
 - XSchem

SRAM

- Utilizes OpenRAM project for SkyWater 130nm fabrication process
- **Requirement:**
 - Had to be placed in top level wrapper
- Used for:
 - DSP Accelerator (GL verification, hardening)
- **Unique Process:**
 - OpenRAM

Project Deliverables

Cade Breeding

Functional Design Precheck Pass Caravel User Guide Bring-Up Plan

Deliverable 1 – Functional Design

What was utilized?

- Modular Verilog designs
- Custom NAND cell
- Pre-hardened blackbox designs

Validated submodule and top-level designs

- RTL Verification
- GL Verification
- C Testing

							000000
00000+ 00000+ 0	00000+100000	+ 00000+ 00000-	+ 0000	0+0000+	0000+	0000000	90
F	<u>IF</u>	F	1	JF	F	F	

Deliverable 1 – Precheck Pass

Client Request

- Product passes the required precheck for MPW submission
- Perform signoff with SDF simulations

Delivered Product

Precheck passes the required tests for submission

Contents of Product

Screenshots and code repository proving precheck pass

Project Deliverables

{{FINISH}} Executing Finished, the full log 'precheck.log' {{SUCCESS}} All Checks Passed !!!

Deliverable 2 – Caravel User Guide

Client Request

- Document implementation processes including behavioral RTL, custom cell, and SRAM
- Document testing process for RTL, GL, SDF, and C testing

Delivered Product

Detailed instruction manual with referenced implementation and verification processes

Contents of Product

Appendix 8.4.1

Deliverable 3 – Bring-Up Plan

Client Request

 Plan that future groups can use to verify functionality of manufactured design

Delivered Product

 Bring up plan that will comprehensively test our design to ensure viability

Contents of Product

- C tests that can be run on the management soc to verify the device
- Written plan with the startup procedure

Conclusion

Cade Breeding

Challenges Future Work Final Summary

Potential Risks Identified in Semester 1

- No OpenMPW submission is available
- DSP module cannot both fit in user area and run at real time Success
- Wishbone bus is unable to interact with user modules after fabrication
- Fabrication error causes an individual module to fail

Conclusion

Challenges

- LVS problems during hardening
- Updating the PDK version
- Open-source tools come with their own challenges and behave differently then propriety tools.
- Precheck DRC issues with the custom cell

SDF Simulations are extremely slow

Future Work

The next step is to submit to the MPW9 shuttle and receive our fabricated design

Future testing groups can utilize our Bring-Up Plan deliverable and module specifications to validate our fabricated design.

Future senior design teams can utilize our Caravel User Guide deliverable to design more complex designs at a faster rate.

Final Summary

Design:

- Functional requirements met
- Precheck passed
- Ready for MPW submission and fabrication

Knowledge:

- Created bring up plan documentation
- Create user guide documentation
- Solved new and existing issues with design processes (Custom cell, SRAM)

Conclusion

{{FINISH}} Executing Finished, the full log 'precheck.log' {{SUCCESS}} All Checks Passed !!!

References

[1] https://www.pngall.com/microcontroller-png/
[2] https://efabless.com/open_shuttle_program
[3] https://www.zerotoasiccourse.com/post/mpw1-bringup/
[4] https://efabless.com/open_shuttle_program

Questions?

34 | sddec23-06

Supplemental Material

35 | sddec23-06

Supplemental

Constraints

eFabless

- 10 mm² user area
- SkyWater 130 nm fabrication process
- Verilog
- Specific folder structure
- MPW Precheck
- Open-source repository

Supplemental

Backdoor SPI Module

Voice Road Noise Isolation Accelerator Module (DSP)

Supplemental

Does our design look like a Minecraft villager?

https://www.minecraft.net/en-us

40 | sddec23-06