EE/CprE/SE 491 WEEKLY REPORT 8 Digital ASIC Fabrication

4/3/2023 - 4/10/2023

Group number: sddec23-06

Client & Advisor: Dr. Henry Duwe

Team Members/Role

- Jake Hafele
- Gregory Ling
- Will Galles
- Cade Breeding

Past Week Assignments

- Will Finalize the design schematic for the Voice Road Noise Isolation
- Jake Begin writing the SPI module in Verilog
- Gregory Try working through the custom cell instructions
- Cade Write the standard cell test in Verilog

Meeting Notes from Previous Week with Dr. Duwe

3/27/23

Updates from us:

- Completed the design plan and lightning talk
 - Creating an ASIC is not cheap to develop mask
 - Included design specification as appendix
 - Included system diagram we worked on
- Will learned about memory
 - FFT would need lots of memory
 - Compared to direct convolution in time domain
 - Orders of magnitude of more memory needed for FFT version
 - Could we do direct convolution and shift through input?

- 1024 samples (one bank of RAM)
- Each sample is 12 bits
- How many multipliers can we fit/cycles to break down for different chunks?
- Quality indicator? Can we go from 12 bits to 8 bits for sample?
 - Perceptual evaluation of speech quality
- Is RAM or shift register better?
 - In terms of energy ram is better
 - Not reading ALL of ram in one cycle
 - Could get one 1 kB banks or 2 512 Byte banks
 - Preload first time and fill pipeline,
- Convolution comes down to 1 timed value
- Look into OpenRAM
- o Backdoor SPI module
 - Do we need to define skywater cells specifically in submodules? No, synthesis handles it
 - Elaboration from behavioral into interpretation
 - Wrote verilog code for shift registers
 - Got stuck on example simulation, deleted a newline accidentally
 - Should be able to get gate level netlists with openlane hardening

Weekly Progress

- Gregory Started writing verilog for the wishbone test
- Jake Developed verilog and C code testbench for the shift in register. Created a new user wrapper to run the RTL simulation
- Will Started to put together in depth component diagram for the DSP module

Pending Issues

- Jake – I followed the sample code given for the two logic analyzer tests, which drove a clock and same control/data signals through the logic analyzer probes for a counter. When creating my own code, I noticed it took a VERY long time for the simulations to run because the code would update the data signals and clock in the ms range. Could I reduce the timestep for the testbench to help with this? Should I test these modules directly without the logic analyzer or GPIO interface directly?

Individual Contributions

- All contributions were for the group this week.

Team Member	Contribution	Weekly Hours	Total Hours
Jake Hafele	Developed Verilog	6	40
	and C code for shift in		
	register test. Still		
	debugging rtl sim		

Gregory Ling	Testing Plan, started verilog for wishbone test	3	33
Will Galles	Testing Plan, started the in-depth component diagram for the DSP module	3	45
Cade Breeding	Working on standard cell test	4	34

Plans for Upcoming Week

- Gregory Finish wishbone test
- Jake Get shift register test fully functional, expand to shift out and backdoor SPI module if successful
- Will Figure out the ratio of memory to multipliers that we are able to implement for the