EE/CprE/SE 491 WEEKLY REPORT 6B

Digital ASIC Fabrication

3/3/2023 - 3/26/2023

Group number: sddec23-06

Client & Advisor: Dr. Henry Duwe

Team Members/Role

- Jake Hafele
- Gregory Ling
- Will Galles
- Cade Breeding

Past Week Assignments

ALL

- Draw out specifications for each module with enough detail for us to verify integration is likely to work and ensure each member has a clear goal in mind for implementation in the next few weeks.

Meeting Notes from Previous Week with Dr. Duwe

3/20/23

Updates from us:

- Created a design specification document to define each module
 - Includes backdoor SPI, DSP module, Clock Gate, Standard cell test, custom cell test, wishbone test

Discussion:

- Clock gate module
 - Clock gating entire user area (run off clocks produced here)
 - Can turn on and off each piece individually
 - Can control clocks individually for DSP, wishbone test, and external clock

- Assume SPI will always be on
- Road noise isolation
 - How does it fit within whole design?
 - Where does data come to and from?
 - Was too slow on MCU, Isaac was looking towards FPGA
- $\circ \quad \text{Standard cell test} \\$
 - One of easier modules
 - Able to test different standard cell libraries
 - Good for risk mitigation
- Custom Cell Test
 - More complex hardware than standard cell
 - Define behavior of cell in Verilog
 - Use magic in OpenRoad to define cell?
 - Black box in Verilog for design
 - Define blackbox either behaviorally or with primitive for sim?
- Design Document
 - ALWAYS more room for technical documents in the appendix
 - Reference in design document from Appendix
 - Also include details test plans in appendices
 - Should be able to hand some part of design document to a 288 student that would be able to test our chip
 - Should not be open for interpretation
 - Heres the module, expected behavior, how it fits in to total design, and then satisfies the requirements
- Bank explosion
 - Silicon Valley Bank went under
 - Bailout from government, possible risk to delaying MPW delivery?
 - Good to include as real world risk
 - Actual deliverable is GitHub artifact that passes the precheck conditions
 - Will be able to deliver technical design that passes requirements
- \circ Timelines

- Gantt chart recommended
- Estimate timeline relative to module complexity
 - Standard cell design is low time variability
 - Wishbone also
- Custom cell design is not a lot of work, but it is new
 - Multiply factor by at least 6 of what it takes, to at least 12
 - Work through more bugs in the process, ask on slack, etc
- SPI
 - Relatively shorter design wise
 - Have to deal with I/O, slightly more complex
 - Medium time
- Road noise
 - Even at design level, issues like fixed point vs floating point
 - Develop test plan, design such that algorithm done in fixed point, able to compare to implementation
 - Before settling in design, able to know it works

- Gap too big from floating point and fixed point, think of software implementation of fixed point
- Higher planning time
- Consider starting integration earlier than being completely done
 - Could be more practical, does it need to be on Gant chart
 - Preliminary design to integrate
 - Issues for hardening came in when design approached a large fraction of user area
 - 5-10 adders, hardening became challenging by tweaking parameters
 - Suggestion with temporary design with most of components are in, try to integrate fully
 - Could sub in standard cell size for the custom cell version
 - Helps with integration hardening before bugs worked out in modules
 - Can kick one module off if scope becomes too large, so we get back a chip still
 - Probability of success does not stack on each module together, treat as isolated pieces that can act separately
- Moderately track time spent for each module
 - Make as accurate as we can

TODO:

- Create a top level module decomposition
 - Powerpoint
- o Set up a meeting with ISU alumni Isaac Rex to go over proposed DSP algorithm
 - Analog to digital conversion with transceiver?
 - How did he deal with car environment?
 - What was he doing with voice audio? Cant it go through MCU or I/O pins
- Start writing tests and Verilog modules for each subcomponent
 - Make MUCH more step by step than a lab manual

Weekly Progress

- Got the details for implementing the DSP module and how the whole system works
- Created Design spcification file that describes all of the modules that we plan to implement
- Finalize functionality of the Backdoor SPI functionality

Pending Issues

• N/A

Individual Contributions

- All contributions were for the group this week.

Team Member	Contribution	Weekly Hours	Total Hours
Jake Hafele	Research inout port and I2C module	3	28
Gregory Ling	Write detailed specifications	3	28
Will Galles	Investigate DSP project	9	37
Cade Breeding	Course Paperwork	3	28

Plans for Upcoming Week

- Draw out the overall architecture of the design and begin writing verilog