

Digital ASIC Fabrication

Design Document

Sddec23-06
Client: Dr. Duwe

Advisor: Dr. Duwe

Jake Hafele – Scribe, SPI Lead
Gregory Ling – Client PoC, Custom Cell Lead

Cade Breeding – Researcher, Clock Lead
Will Galles – Researcher, DSP Lead

sddec23-06@iastate.edu

http://sddec23-06.sd.ece.iastate.edu/

Revised: 5/3/2023 Revision: 1.1

1

Executive Summary

Problem Statement
The ability to create a custom digital ASIC (Application Specific Integrated Circuit) is often locked
behind high barriers to entry and restricted to industry professionals. Many different groups would
benefit from a method to create custom ASIC designs including research groups, future senior
design teams, and other students who would benefit from the experience of designing custom
parts. We will submit a design to the eFabless platform to test the limits of what they can
manufacture and determine the limits of their processes including clock gating, power
management, custom logic cells, and various other components of the framework. This learning
will be passed down to future users who will use our design as a reference in creating their own for
research or other learning tasks.

Development Standards & Practices Used
 IEEE 1364-2005 - IEEE Standard Verilog Hardware Description Language

o Our ASIC will be written in Verilog and make use of Value Change Dump files for
simulation results, specified in this standard

 ISO/IEC 9899:2018 – C programming language (C17)
o Our test programs for the harness MCU will be written in the C17 language.

 TIA/EIA 232-F – RS232 (UART) Protocol
o Our bring-up plan will use UART to communicate to the harness MCU to

communicate test data.
 SPI Protocol

o This is a de facto standard originally defined by Motorola and is a simple
communication interface we will use as a backdoor into our design.

 Wishbone Bus
o Open-source hardware bus for interconnecting peripherals like an AXI bus created

by Silicore Corporation. We will use this bus for interfacing between the harness
MCU and our peripheral modules we implement.

 I2C Protocol
o The I2C protocol was a different form of bus protocol originally designed by NXP

Semiconductor. We considered using I2C for managing the backdoor interface, but
opted for SPI as it would be simpler to implement.

2

Summary of Requirements

 Test the limits of the eFabless process to the best of our ability including, but not limited
to:

o Test clock gating
o Instantiating several standard cells provided by eFabless
o Explore custom logic cells
o Ensure our design is modular
o Using the wishbone bus provided in the wrapper project

 Include a bring up plan for future team to test manufactured design once returned
 Test and verify functionality of previous team’s manufactured design if it is shipped within

a reasonable period
 Use the mpw_precheck tool at https://github.com/efabless/mpw_precheck to check our

design requirements before submission

Applicable Courses from Iowa State University Curriculum
 CPR E 281 – Digital Logic

o Basic hardware design in Verilog with simple digital circuits
 CPR E 288 – Embedded Systems I

o C programming on embedded devices
 CPR E 381 – Computer Organization and Assembly Programming

o Complex tasks in hardware design, creation of a MIPS processor
 CPR E 488 – Embedded Systems Design

o Design of various embedded systems, introduction to AXI busses
 ENGL 250 – Written, Oral, Visual, and Electronic Composition

o Introduction to English communication in various media formats
 ENGL 314 – Technical Communication. Writing technical documentation

o Technical documentation and presentations on complex topics

New Skills/Knowledge acquired that was not taught in courses
Tools:

 KLayout
 GTKWave
 OpenROAD
 OpenLANE
 Magic
 Icarus Verilog

Skills:

 ASIC Design
 Using open-source tools
 Version Control
 Agile Workflow

3

 Parsing sparse documentation

Knowledge Gained:

 Clock Domain Crossing
 Clock Gating
 Digital Signals Processing
 Cell Layout
 Routing

4

Table of Contents
Executive Summary ... 1

1 Our Team .. 11

1.1 TEAM MEMBERS ... 11

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT ... 11

1.3 SKILL SETS COVERED BY THE TEAM .. 11

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM ... 11

2 Introduction ... 13

2.1 PROBLEM STATEMENT ... 13

2.2 REQUIREMENTS & CONSTRAINTS .. 13

2.3 ENGINEERING STANDARDS .. 15

2.4 INTENDED USERS AND USES ... 16

2.5 MARKET SURVEY ... 17

3 Project Plan .. 18

3.1 Project Management/Tracking Procedures .. 18

3.2 Task Decomposition .. 18

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria ... 19

3.4 Project Timeline/Schedule ... 21

3.5 Risks And Risk Management/Mitigation .. 21

3.6 Personnel Effort Requirements .. 22

3.7 Other Resource Requirements ... 23

4 Design .. 24

4.1 Design Context .. 24

4.1.1 Broader Context .. 24

4.1.2 User Needs ... 25

4.1.3 Prior Work/Solutions .. 26

4.1.4 Technical Complexity ... 27

4.2 Design Exploration .. 27

4.2.1 Design Decisions ... 27

4.2.2 Ideation .. 28

4.2.3 Decision-Making and Trade-Off .. 28

4.3 Proposed Design ... 29

5

4.3.1 Design Visual and Description ..30

4.3.2 Functionality ...30

4.3.3 Areas of Concern and Development ... 31

4.4 Technology Considerations .. 31

4.5 Design Analysis .. 31

4.6 Design Plan ... 32

5 Testing .. 32

5.1 Unit Testing .. 33

5.2 Interface Testing .. 33

5.3 Integration Testing... 33

5.4 System Testing ... 33

5.5 Regression Testing ... 34

5.6 Acceptance Testing .. 34

5.7 Security Testing .. 34

5.8 Results ... 34

6 Implementation ... 35

6.1 Standard Cell Test .. 35

6.2 Custom Cell Test .. 35

6.3 Wishbone Test ... 35

6.4 Clock Gating ...36

6.5 Backdoor SPI ..36

6.6 Voice Road Noise Isolation (DSP) ..36

6.7 Submission ... 37

6.8 Bring-up Plan ... 37

7 Professionalism ..38

7.1 Areas of Responsibility ..38

7.2 Project Specific Professional Responsibility Areas .. 40

7.3 Most Applicable Professional Responsibility Area .. 42

8 Closing Material .. 43

8.1 Discussion ... 43

8.2 Conclusion ... 43

8.3 References ... 44

6

8.4 Appendices .. 45

8.4.1 Team Contract .. 45

Team Procedures ... 45

Participation Expectations ... 45

Leadership .. 46

Collaboration and Inclusion ... 46

Goal-Setting, Planning, and Execution ... 47

Consequences for Not Adhering to Team Contract .. 48

8.4.2 Module Design Specification ... 49

Backdoor SPI Interface ... 49

Voice Road Noise Isolation (DSP) ... 50

Clock Gating Module ... 52

Standard Cell Test .. 53

Custom Cell Test .. 53

Wishbone Test ... 54

8.4.3 Testing Results .. 55

Shift In Register .. 55

Shift Out Register ... 57

Adder .. 59

Standard Cell Test: 2x1 MUX .. 60

8.4.4 Detailed SPI Module Implementation ... 61

Master/Slave Clock Synchronization ... 61

Design Summary ... 62

Research and Planning ... 68

Test Procedure ... 69

7

List of Acronyms

 ADC – Analog to Digital Converter
 ASIC – Application Specific Integrated Circuit
 AXI – Advanced eXtensible Interface
 DAC – Digital to Analog Converter
 DMA – Direct Memory Access
 DRC – Design Rule Check
 DSP – Digital Signal Processing
 FPGA – Field Programable Gate Array
 FRAM – Ferroelectric Random Access Memory
 GDS – Graphic Data System
 GPIO – General Purpose Input / Output
 I2C – Inter Integrated Circuit protocol
 IEEE – Institute of Electrical and Electronics Engineers
 IO – Input / Output
 LA – Logic Analyzer
 LVS – Layout Versus Schematic
 MPW – Multi-Project Wafer
 MS – Microsoft
 NSPE – National Society of Professional Engineers
 PCB – Printed Circuit Board
 PDK – Product Development Kit
 PDN – Power Delivery Network
 RTL – Register Transfer Level
 ReRAM – Resistive Random Access Memory
 SHA-1 – Secure Hash Algorithm 1
 SOC – System On Chip
 SPI – Serial Peripheral Interface
 SVB – Silicon Valley Bank
 UART – Universal Asynchronous Receiver and Transmitter
 WSL – Windows Subsystem for Linux

8

List of Definitions

 eFabless – Open-source fabrication company who will manufacture our design
 Caravel Harness – Provided wrapper around our design which includes a pre-built SoC
 User Area – The region inside the Caravel Harness we are allowed to edit
 Management Area / SoC – The part of the Caravel Harness which contains the

management utilities including the SoC and logic analyzer probes
 Wishbone bus – The peripheral bus used by the Management SoC to communicate with

peripherals in the User Area
 Verilog – The hardware design language specified by IEEE Std 1364-2005 which we will use

for implementing our design in the user area
 SkyWater 130nm – The fabrication process used by eFabless supported by the SkyWater

Foundry
 GTKwave – A cross-platform and open-source waveform viewer for viewing simulation

results from VCD files
 KLayout – An open-source tool for viewing and editing mask layouts
 OpenROAD – The collection of open-source tools based on OpenLANE configured and

provided by eFabless to generate production files from Verilog descriptions
 RISC-V – An open-source instruction set architecture that defines the group of commands

that is used by software to communicate with the hardware of the processor.

9

List of Figures

Figure 1 Proposed Milestones .. 20

Figure 2 Project Timeline ... 21

Figure 3 Time Requirements .. 22

Figure 4 Caravel User Area Module Diagram ...30

Figure 5 External SPI Connection ... 50

Figure 6 Voice Road Noise Component Diagram .. 52

Figure 7 Shift in 100 ... 55

Figure 8 Shift in 256 .. 55

Figure 9 Shift in 10498 ... 56

Figure 10 Shift in 0x0 .. 56

Figure 11 Shift in 0xFFFFFFFF ... 57

Figure 12 Shift in with enable low .. 57

Figure 13 Shift out 0x64 .. 58

Figure 14 Shift out 0x100 .. 58

Figure 15 Shift out 0x2902 .. 58

Figure 16 Shift out 0x0 ... 59

Figure 17 Shift out 0xFFFFFFFF ... 59

Figure 18 Adder Results ... 59

Figure 19 More Adder Results ... 59

Figure 20 Standard Cell 2to1 MUX Waveforms ... 60

Figure 21 Master/Slave SPI Interaction ... 61

Figure 22 Clock Synchronization Example .. 62

Figure 23 Backdoor SPI Top Level ...63

Figure 24 Backdoor SPI Schematic ... 64

Figure 25 Verilog implementation of N bit shift in register, shift_in_reg.v ... 66

Figure 26 Verilog implementation of N bit shift out register, shift_out_reg.v 67

Figure 27 Initial Brainstorm .. 68

Figure 28 Rough First Schematic .. 68

Figure 29 Shift in tests ... 69

Figure 30 Test driver .. 70

Figure 31 Shift in test function ... 71

10

Figure 32 Shift out test function .. 72

Figure 33 Shift out tests .. 72

List of Tables

Table 1 Project Risks .. 22

Table 2 Project Context.. 24

Table 3 Areas of Responsibility ..38

Table 4 o_DOUT_VALID Truth Table ... 64

11

1 Our Team

1.1 TEAM MEMBERS

 Cade Breeding
 Gregory Ling
 Jake Hafele
 Will Galles

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

 Digital logic (state machines & combinational logic)
 Embedded systems (microcontroller programming)
 Verilog
 Waveform analysis
 Digital signal processing
 Revision control (Git)
 Open communication
 Commitment to accountability
 ASIC layout/hardening
 Linux debugging

1.3 SKILL SETS COVERED BY THE TEAM

 Digital logic (state machines & combinational logic): CB, GL, JH, WG
 Embedded systems (microcontroller programming): CB, GL, JH, WG
 Verilog: CB, GL, JH, WG
 Waveform analysis: CB, GL, JH, WG
 Digital signal processing: Minimal, need to learn
 Revision control (Git): CB, GL, JH, WG
 Open communication: CB, GL, JH, WG
 Commitment to accountability: CB, GL, JH, WG
 ASIC layout/hardening: None, need to learn
 Linux debugging: CB, GL, WG

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

 Kanban task tracking
o Use the task manager in MS Teams to control workflow
o Keeps client and advisor in loop
o Each member tracks their own tasks
o Each member can pull in new work once theirs is completed
o The group can keep track of everyone's accomplishments and possible sticking

points
 Agile workflow

o Hold weekly intra-team update meetings on Sundays
o Communicate with each other over teams outside of meeting times

12

o Weekly meetings with Client/Advisor on Mondays to demonstrate progress and
get feedback

o Able to adapt quickly to changes caused by the OpenROAD tooling or other
unforeseen challenges

1.5 INITIAL PROJECT MANAGEMENT ROLES

 Researcher, Clock Lead – Cade Breeding
 Client Point of contact, Custom Cell Lead – Gregory Ling
 Scribe, SPI Lead – Jake Hafele
 Researcher, DSP Lead – Will Galles

13

2 Introduction

2.1 PROBLEM STATEMENT

The ability to create a custom digital ASIC (Application Specific Integrated Circuit) is often locked
behind high barriers to entry and restricted to industry professionals. Many different groups would
benefit from a method to create custom ASIC designs including research groups, future senior
design teams, and other students who would benefit from the experience of designing custom
parts. We will submit a design to the eFabless platform to test the limits of what they can
manufacture and determine the limits of their processes including clock gating, power
management, custom logic cells, and various other components of the framework. This learning
will be passed down to future users who will use our design as a reference in creating their own for
research or other learning tasks.

2.2 REQUIREMENTS & CONSTRAINTS

Advisor Requirements

For this project, our advisor has several requirements for us to fulfill as a result of this project:

 Test the limits of the eFabless process to the best of our ability
 Include a bring up plan for a future team to test manufactured design once returned
 Test and verify functionality of previous team’s manufactured design if it is shipped within

a reasonable period
 Use the mpw_precheck tool at https://github.com/efabless/mpw_precheck to check our

design requirements before submission

To satisfy the requirement of testing the eFabless process, we have defined the following sub-
requirements which we will complete:

 Test clock gating
 Instantiating several standard cells provided by eFabless
 Explore custom logic cells
 Instantiate a small, yet relatively complex module
 Have multiple redundancy paths if one fails
 Ensure our design is modular
 Use the wishbone bus provided in the wrapper project

Design Constraints

The major constraint with this project is that it must use the eFabless manufacturing process. As a
result, there are many sub-constraints which we are required to comply with for our design to be
accepted by eFabless detailed below.

14

eFabless Open MPW (Multi-Project Wafer) submission Constraints:
https://platform.efabless.com/shuttles/MPW-8

The following project requirements must be met to qualify for inclusion on the open
MPW shuttle program:

 The project must be targeted on the currently supported Open PDK.
 The project must be posted on a git-compatible repo and be publicly accessible.
 The top-level of the project must include a LICENSE file for an approved open-

source license agreement. Third-party source code must be identified, and source
code must contain proper headers. See details here.

 The repo must include project documentation and adhere to Google's inclusive
language guidelines. See details here.

 The project must be fully open. The project must contain a GDSII layout, which
must be reproducible from the source contained in the project.

 Projects must use a common test harness and padframe based on the Caravel
repo. New projects should start by duplicating or forking the Caravel User Project
repo and implementing their project using the user_project_wrapper. The Caravel
repo is configured as a submodule in the project under the ‘caravel’ directory.
Note -- you do not need to initialize nor clone the Caravel sub-directory to
complete or submit your project. See the project README for further instructions.
The projects must be implemented within the user space of the layout and meet
all requirements for the Caravel.

 Projects must successfully pass the Open MPW precheck tool, including LVS and
DRC clean using the referenced versions of OpenLane flow. Projects should
implement and pass a simulation testbench for their design integrated into
Caravel. The Caravel User Project provides an example of how to implement this.

Caravel Harness Directory Structure Constraints
https://caravel-harness.readthedocs.io/en/latest/getting-started.html#required-directory-
structure

Required Directory Structure
 gds/ : includes all the gds files used or produced from the project.
 def : includes all the def files used or produced from the project.
 lef/ : includes all the lef files used or produced from the project.
 mag/ : includes all the mag files used or produced from the project.
 maglef : includes all the maglef files used or produced from the project.
 spi/lvs/ : includes all the spice files used or produced from the project.
 verilog/dv : includes all the simulation test benches and how to run them.
 verilog/gl/ : includes all the synthesized/elaborated netlists.
 verilog/rtl : includes all the Verilog RTLs and source files.
 openlane/<macro>/ : includes all configuration files used to run openlane on your

project.

15

 info.yaml: includes all the info required in this example. Please make sure that you
are pointing to an elaborated caravel netlist as well as a synthesized gate-level-
netlist for the user_project_wrapper

User Project Constraints
https://github.com/efabless/caravel_user_project/blob/main/docs/source/index.rst#user-
project-wrapper-requirements
Your hardened user_project_wrapper must match the golden user_project_wrapper in the
following:

 Area (2.920mm x 3.520mm)
 Top module name "user_project_wrapper"
 Pin Placement
 Pin Sizes
 Core Rings Width and Offset
 PDN Vertical ancd Horizontal Straps Width
 You are allowed to change the following if you need to:
 PDN Vertical and Horizontal Pitch & Offset
 To make sure that you adhere to these requirements, we run an exclusive-or

(XOR) check between your hardened user_project_wrapperGDS and the golden
wrapper GDS after processing both layouts to include only the boundary (pins
and core rings). This check is done as part of the mpw-precheck tool.

2.3 ENGINEERING STANDARDS

The following list describes a set of engineering standards that we used or considered for our
project:

 IEEE 1364-2005 – IEEE Standard Verilog Hardware Description Language
o Our ASIC will be written in Verilog and make use of Value Change Dump files for

simulation results, specified in this standard
 ISO/IEC 9899:2018 – C programming language (C17)

o Our test programs for the harness MCU will be written in the C17 language.
 TIA/EIA 232-F – RS232 (UART) Protocol

o Our bring-up plan will use UART to communicate to the harness MCU to
communicate test data.

 Serial Peripheral Interface (SPI) Protocol
o This is a de-facto standard originally defined by Motorola and is a simple

communication interface we will use as a backdoor into our design.
 Wishbone Bus

o Open-source hardware bus for interconnecting peripherals like an AXI bus created
by Silicore Corporation. We will use this bus for interfacing between the harness
MCU and our peripheral modules we implement.

 Inter-Integrated Circuit (I2C) Protocol

16

o The I2C protocol was a different form of bus protocol originally designed by NXP
Semiconductor. We considered using I2C for managing the backdoor interface, but
opted for SPI as it would be simpler to implement.

2.4 INTENDED USERS AND USES

Our project has several different intended users, each with different reasons for using our design
and different requirements for our project. For the most part, our design is going to be a silicon-
proven reference to other groups interested in implementing their own circuit in hardware.

Our Team

The main user of interest for our project is us. Our project will teach us about the fabrication
process, give us a thorough understanding of how an ASIC is designed from the ground up, and
what limitations are in ASIC designs. We have used FPGAs in several of our classes to create
specialized digital circuits before, but never at the level of a custom silicon hardware design. For us,
learning and exploring will be one of the main requirements of this project.

Future Senior Design Groups

Future Senior Design groups will use the results of our project to guide their future designs. Our
design will test the limits of the design process so future teams know what is possible and how to
implement it. They will be creating a project for a specific task and use our design as a reference for
how to design their projects and what the limitations are.

Research Teams

The research team use case is very similar to the future senior design groups. There are several
groups who would benefit from being able to create low-cost custom ASICs for their research goals.
Having a proven design that they can reference will allow them to perform more cutting-edge
research using more efficient technology than FPGAs which tend to be significantly higher power.

eFabless Open-Source Community

The eFabless project is centered around the open-source community. Every submission to the
eFabless project is required to be open source and visible to other groups for them to reference for
their designs. Just as we will look at other designs to determine what to experiment with in this
project, other potential designers will look at our designs to see what we have done to fabricate
their own projects.

17

2.5 MARKET SURVEY

The market price for a minimal production run for a custom ASIC is about $1M. This is not a
feasible option for small groups who only need to create a small quantity of a custom design and do
not have enough funding to pay for a $1M production run (“How much does it cost”). As a result,
several companies have begun offering Multi-Project Wafer options where multiple groups are
bundled together onto a single wafer and the production run cost is split between them. Each
group receives a smaller order quantity, but also a significantly reduced cost. We will be submitting
to the OpenMPW project by eFabless which is a free option funded by Google that requires that all
submissions be open source. eFabless has another option named ChipIgnite which has no open-
source requirement, has a stricter schedule, and costs $9,750 per 10 mm2 project (eFabless). Other
companies also provide MPW submissions include MUSE Semiconductor which uses TSMC’s
manufacturing at a comparable price of around $1,250 per mm2.

One additional note is eFabless provides configured open-source tooling to use with their
processes, MUSE’s educational package is $1,000 for the PDK, $22,000 per mm2, and requires an
NDA.

18

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team has decided to follow an agile project management style. Due to the unforeseen
complexity of many parts of our project, being able to adapt to different changes as they arise in
our workflow will be a great benefit. We have weekly update meetings within our team, and weekly
update meetings with our advisor to keep us synchronized and ensure progress is being made.

We track our progress primarily through the Tasks module in MS Teams, supporting our agile
model by assigning specific tasks to each member and keeping track of past and future tasks which
need to be completed. We also utilize git and the ECpE GitLab for version control purposes to
ensure our code base is synchronized across our team.

3.2 TASK DECOMPOSITION

Below is a numbered list of each decomposed task that is required to complete our project:

1. Install the open-source tools and simulate sample code
a. Build a sample user project with the Caravel tool flow
b. Complete a Verilog simulation of a sample user project
c. View the output waveforms of a sample user project in GTKWave

2. Define our project specifications
a. Create list of many possible modules that could be useful to implement
b. Investigate Skywater standard cell libraries to determine what design modules are

possible
c. From that list narrow down and select the most important few that we would want

to develop
3. Draw out a top-level diagram of the user area including each individual module

a. Determine how each module will interact with clock gating
b. Determine how each module will interact with SPI slave
c. Determine how each module will interact with included ARM microcontroller
d. Determine how each module will interact with the wishbone bus

4. Draw out detailed implementation of each module
a. Draw out module to include each of the needed subcomponents that will need to

be created
b. Define interactions between subcomponents for data and control paths needed for

full functionality
5. Write initial Verilog implementation of each module

a. Create a Verilog implementation of each module assigned to individual members
6. Test and iterate using RTL simulations

a. Create thorough tests that will cover main functionality of module
b. Create tests that verify module satisfies top level constraints of the module
c. Create basic tests to cover edge cases outside of typical operating state

7. Join modules together and verify final design as they are completed
a. Review Verilog modules designed by each team member

19

b. Review Verilog testbenches designed by each team member
8. Test and iterate using RTL simulations

a. Create timing tests to ensure that all individual modules satisfy the timing
requirements of the system

b. Create main functionality tests that verify each module gives correct results for
main desired task

c. Create tests to verify functional interactions between modules
9. Verify using gate-level simulation

a. Create tests to ensure modules operate with the same functionality as our RTL
simulations

10. Verify submission using the provided verification tools
a. Ensure that final project passes Efabless’ precheck tests

11. Submit to MPW Shuttle
a. Create public repository to satisfy Efabless’ open-source requirement
b. Create a project on Efabless’ website and point at our public repository
c. Submit the design to the time applicable OpenMPW shuttle

12. Create Software to run on embedded microcontroller
a. Create a repository of tested sample code which will verify the integrity of our

system
13. Create Documentation and bring up plan to test returned project in the future

a. Document the bring-up plan in a detailed form for a future user (at the level of a
288 student) could use to test our design when returned from eFabless

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Due to the nature of our project, we rely on functional requirements, and our milestones are based
on qualitative data. Our progress milestones are defined as a functional module or subunit of a
module that has been tested and verified independently from the rest of the design which will
provide small enough granularity for our group to keep up with task deadlines well.

20

Figure 1 Proposed Milestones

21

3.4 PROJECT TIMELINE/SCHEDULE

Figure 2 Project Timeline

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

All of our tasks carry significant risks. The overall project has its own set of risks, including the
large risk that eFabless will not have an MPW submission open near the time we need to submit
our design. This could be caused by several factors, a recent example being the SVB collapse which
did affect eFabless in a minor capacity. The second major risk with our design is that anything can
go wrong during fabrication, and we receive effectively a black box back. If we make a major design
flaw in the clock system, the entire chip will be effectively unusable. Therefore, we will be ensuring
throughout our design process that our project is as modular and separate as possible to minimize
the risk that one small module’s mistake will take down a large portion of the rest of our design
with it. Any critical components will have backups to ensure redundancy, for example in the case
the wishbone bus fails to operate, we will have a secondary SPI bus that can bypass the built-in
wishbone bus and access all our modules independently. This also allows us to test the entire
project even in the event that the processing system is unusable.

22

These risks will affect the outcome of our project, but not the viability of our product as a test of
the system. If a submission does not open, our design will be left in a submittable form to be
submitted whenever submissions do open, and the usefulness of our project will not be diminished.
If our project fails due to a manufacturing flaw, then our project succeeded in determining a
limitation of the eFabless system. However, if it is a major design defect, that will significantly limit
the effectiveness of our tests, so we will use test cases to verify the logic of our design before
submission.

Table 1 Project Risks

Risk Estimated Probability

No MPW submission is available 40%

DSP module cannot both fit in user area and run at real time 40%

Wishbone bus is unable to interact with user modules after
fabrication

5%

Fabrication error causes an individual module to fail 15%

3.6 PERSONNEL EFFORT REQUIREMENTS

These are the forecasted time requirements for this project. They are based on our initial couple of
weeks working on the project and our interactions with previous senior design teams that have
worked on similar projects.

Figure 3 Time Requirements

23

3.7 OTHER RESOURCE REQUIREMENTS

We will have no direct financial dependencies to submit as eFabless is free. If we receive a past
design, we may gain financial requirements for physical testing depending upon what we get back
from eFabless.

The additional resources we require are all open-source tools which are provided by eFabless for
use with their MPW submissions:

 eFabless OpenMPW shuttle program
 Skywater 130nm OpenPDK
 GTKwave
 KLayout
 OpenROAD

The GitLab instance we use is provided to us by the ECpE department.

24

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Our project is situated inside the larger ecosystem of digital design. Digital design is broken down
into multiple sectors to develop different kinds of electronics. Specifically, our project falls under
the domain of developing Application Specific Integrated Circuits. This area of design is focused on
implementing digital designs directly onto silicon chips. These chips are custom designed to
perform a very specific task.

The main communities that our design will benefit will be our own team, future senior design
groups, research teams, and the eFabless open-source community.

Our project tries to address the need for open-source ASIC design for students and research
groups. These types of designs are typically locked behind high level academic research and major
corporations with large capital backings. Our project strives to bring this technology to individuals
that do not have the resources necessary to create one of these designs on their own in the current
age. By creating our open-source project we are lowering the bar to entry for creating an ASIC chip
for others referencing our work.

Table 2 Project Context

Area Description Examples

Public health,
safety, and
welfare

Our project strives to open the ability to
design and manufacture ASIC chips to
groups without the typical capital
requirements. Our project will allow new
designers to leverage our designs in
creating their own designs later.

Our project will allow smaller
businesses and individuals to
enter the market in designing
ASIC chips. This will increase
competition and decrease costs for
individual consumers down the
road.

Global,
cultural, and
social

Our project will look to help the open-
source digital design community. Our
project will introduce more designs for
new and existing members of the
community to leverage in their own
designs. This will create a better
functioning and more active community.

The community will grow from
more activity, and it will allow for
newer members to be introduced
with less effort. This will create an
exponential growth in the
community that will lead to more
projects like ours that will in turn
bolster the community.

Environmental Our project strives to support smaller
creators that can leverage the tools more
effectively than larger corporations. Our
project will create a better environment
through the above process as a smaller
scale design will allow for more efficient
use of resources. It will allow for more

One example of how this will
create a better environment is by
allowing for more specific
integrated circuits to be created.
This will allow for smaller and
more efficient devices to be
created. This in turn will lower the
energy footprint of these devices

25

specialized devices that can reduce the
overall material footprint.

which in turn will lower the
overall carbon footprint of the
devices utilizing these ASIC chips.

Economic Our project, as part of the open-source
partnership that this belongs to, will help
make the design and fabrication of ASICs
more financially available, so more
available to many more interested
groups such as future students,
researchers, and hobbyist groups. With
more individuals able to create these
products there will be more competition
in the market. This will allow smaller
businesses and individuals to compete
and make a profit in this market.

The nature of open-source work
will allow individuals to create and
market their own products. This
will create a more competitive
market that will increase
innovation. This will overall create
a better market for consumers.

4.1.2 User Needs

The user needs for each of our listed user groups in Section 2.4 are as follows:

Our Team

Our senior design team needs an accessible way to design and harden a digital ASIC because we are
unfamiliar with the process and want to learn through using open-source tools and silicon proving
another digital design.

Future Senior Design Groups

Future senior design groups need to execute a comprehensive test procedure because their main
assignment for the project would be to verify the design of our digital ASIC deliverable.

They also need to have our project as a reference to create more complex designs with the
knowledge that they will function as expected.

Research Teams

Research teams need more accessible tools to bring up digital hardware designs because there will
are frequent changes or variations in designs, which can be near impossible to order with only one
chip on a wafer due to costs and time.

26

eFabless Open-Source community

The open-source community needs more accessible resources to bring up digital chips because
most ASICs currently require a large order of chips on one wafer, which is unrealistic for someone
not a part of a large company.

4.1.3 Prior Work/Solutions

MPW-1 Shuttle:

 https://platform.efabless.com/projects/shuttle/1

Caravel Documentation:

 https://caravel-user-project.readthedocs.io/en/latest/

Prior Senior Design Teams:

 http://sddec22-17.sd.ece.iastate.edu
 http://sdmay23-28.sd.ece.iastate.edu
 http://sddec23-08.sd.ece.iastate.edu

We have access to all previous MPW shuttles which are designs that other groups or individuals
have submitted to the eFabless project. These are made available as open-source reference designs
for others to reference. We have briefly explored the MPW shuttles site; the projects range from
simple adders to a 10-bit DAC or an AXI DMA. Ours is more of a spread of simple tests to see how
the submission and fabrication process works with different parts of the ASIC.

We are following the previous and concurrent senior design teams which have worked on various
ASIC projects (bitcoin mining, spiking neural networks, ReRAM). None of these projects have been
returned from fabrication, so we have no results to reference yet. However, we do have their
designs and documentation on how they created their designs. The major difference between our
designs is theirs is a single coherent design which may give an advantage as it shows a specific
application where this ASIC design process could be useful, but it comes with the shortcoming that
it does not test as many individual aspects of the platform. Our design is more modular, which
allows us to test more of the system and have more resiliency if one part fails, but it will not have a
particular use-case aside from a test and playground module if it succeeds.

One other major difference is prior projects focused more on documentation while our group is
more focused on exploring the platform’s limits and not so much on documentation.

27

4.1.4 Technical Complexity

Our final ASIC design will include the following subcomponents to test different potential designs
and reduce the risk factor of our overall design failing:

1. Voice Road Noise Isolation Module
o This module will require the development of a large convolution network in

hardware. Due to size constraints of the useable area this will also lead to the
requirement to separate the operation out over multiple cycles.

2. Backdoor SPI
o This module will require the development of our own protocol inside of the larger

SPI interface. This will allow us to create our own method of communication to
the interior modules without needing to interface through the integrated
microcontroller. This protocol will need to interface between multiple clock
domains and ensure data integrity through the process.

3. Clock Gating
o This module will require development of a module capable of regulating the clocks

inside our design. It will need to be able to shut down individual modules clock
sources to shut them off. It will also need to be able to switch the chip from
running on internal and external clock signals.

4. Wishbone Test
o This test will require a functional test of the integrated data bus inside the ASIC. It

will need to test the ability of the integrated microcontroller to send data to and
receive from the user development area of the chip.

5. Skywater Standard Cell Logic
o This module will require the implementation of a standard cell and development

of a testing procedure to determine the integrity of the manufacturing process.
6. Custom Cell Logic

o This module will require the development of our own cell in the sky water 103nm
process. We will have to develop our design in the different layers of the actual
manufacturing process to create a functional unit.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

The following set of prompts include important design questions that we have considered during
our ideation and planning phases for our project. We will focus on answering these

 Do we want a modular design where each team member implements a specific function, or
a combined design that completes a larger task?

 What submodule designs will we choose to implement, and why will they be worthwhile?
 How can we reduce the risk of our overall design from failing with each submodule?
 How will we implement the Voice Road Noise Isolation Module that was previously

designed for a microcontroller by another student for a different project?

28

4.2.2 Ideation

One of the more open design decisions was determining how we wanted to go about implementing
the Voice Road Noise Isolation Module. The development of this module was inspired and guided
by Issaac Rex’s EE 529 Speech Enhancement project. The module had many considerations
between different algorithms and processes to separate voice audio from road noise audio. Below
are some of the different design ideas were considered:

 The first design idea was to implement a Weiner Filter using a direct convolution to apply
the filter to the incoming audio all in the time domain.

 The second design idea was to implement a Weiner Filter again but this time to perform a
Fourier transform on the incoming audio first. It would then apply the filter in the
frequency domain before performing the inverse Fourier transform to generate the new
output audio.

 The next idea was to use a Subspace algorithm that would isolate the clean audio using the
Karhunen-Loeve Transform to reflect only the clean audio into a new subspace.

 The third method that we looked to utilize was the use of a Deep Neural Network that
would be used to apply a correction to magnitudes generated from the Fourier transform.
This method would again convert the incoming audio into the frequency domain before
adjusting it and converting it back to the time domain.

 The last item that we looked at utilizing would be a Long Short Term Recurrent Neural
Network. This design would differentiate from the previous as the neural network would
both take in current input values along with previously generated output values to then
apply an adjustment on the incoming audio.

In the end we decided to pursue the Weiner Filter via a direct convolution. This was decided as we
were worried about complexity using the subspace method and had sizing concerns about both
neural network designs. This eliminated all the options except the two Weiner Filter approaches.
After more deliberation it was determined that performing the Fourier Transform would require a
sizable portion of memory to be built into our hardware to support it, and we have limited space in
the user area to put RAM. Therefore, we concluded the Weiner Filter via direct convolution would
be the most feasible to implement.

4.2.3 Decision-Making and Trade-Off

There were many tradeoffs we had to consider and decide on that led us to our final design. One
tradeoff decision we made was whether to attempt a single design or several smaller, more
modular, designs. Prior teams working on this project have created single designs, a SHA-1 bitcoin
miner, spiking neural network, ReRAM implementation, etc. However, when shown the project
requirements, we decided that the requirements would be better fulfilled by implementing several
mostly independent designs (see Appendix 8.4.2). The goal of our project is to experiment with
different designs, so having several different independent designs will provide better resiliency for
our test. If one module fails, we have usable results from that module, but we also have the results
of all the other modules as well. This will give our project more value as a test than a single-design
implementation because if the single design fails, you gain far less information than from the
failure of one of several smaller modules.

29

4.3 PROPOSED DESIGN

At the beginning of Senior Design 1, in January 2023, we begun discussing potential project ideas
with our advisor and client Dr. Duwe. During this time, we decided to create a design that housed
multiple modules of different digital functions, to help provide a lower risk of our entire module
failing, while enabling a future design team to test more of our chip if one part had failed. After
this, we explored different submodule designs, some of which we did not end up carrying through
for our design such as an FRAM memory module, a power gating module, and a neural network
implementation for the Voice Road Noise Isolation (DSP) module.

Each of these modules were deemed to be either too taxing on space or impossible to manufacture
with the open-source fabrication process through eFabless. FRAM required a specialized
fabrication process with two extra layers (“FRAM FAQs”), power gating is not supported in the
eFabless tooling, and a neural network required too much complexity. In February 2023, we
decided on implementing the submodules including the Voice Road Nosie Isolation (DSP) module,
a SPI slave interface, clock gating, SkyWater standard cell logic, custom cell logic, and a wishbone
bus test. These modules scale on complexity which will allow us to create both an earlier
deliverable with some of the modules and reduce overall risk for our final fabricated chip.

During Senior Design 1, in January 2023, we began using the GitHub caravel repository provided by
eFabless, which is how we simulate and harden our digital designs. We met with a previous senior
design group who is implementing a spiking neural network system, to overview how to simulate a
sample adder testbench through the caravel harness. This required us to install WSL-2 on Windows
computers and install open-source tools including GTKWave, to view the output simulation
waveforms from the sample adder that was given to us by the previous design team.

During March 2023, we began to draw submodule diagrams showcasing how each design could be
implemented, such as the Voice Road Nosie Isolation (DSP) module or the Backdoor SPI Interface.
This helped us greatly, since it allowed us to find more design questions that we had not yet
thought of, and we could come to a conclusion as a group.

30

4.3.1 Design Visual and Description

Figure 4 Caravel User Area Module Diagram

The user area diagram in Figure 4 depicts the user space area of our project which is composed of
several distinct modular components. The management soc and GPIO blocks on the left side of the
above diagram are constraints given to us by efabless where there is a RISC-V processor a wishbone
bus and other GPIO as defined by the caravel documentation linked above. The rest of the blocks
in the above diagram are the modules that we will be implementing in the project. All the modules
are further defined in Appendix A, but to summarize the modules there is the standard cell test
which takes an identical logic gate from each of the four standard cell libraries provided by the
project and mux them together so that the propagation delay can be measured through the various
implementations. The custom cell test, which is currently still being developed but will take two
inputs and provide one output. The SPI interface will be a simple bidirectional 4-wire SPI bus on
physical pins to the modules we create elsewhere on the device. Finally, the DSP module
implements a Weiner Filter to isolate the human voice from background road noise while traveling
in a vehicle.

4.3.2 Functionality

The intended operation of our design is to have an ASIC that can be tested by another group to
allow them to benchmark some of the capabilities of the manufacturing process. It is designed with
the possibilities of certain modules or signals failing and having alternative ways to still be able to
test. An example of this is the clock gating module which will have an override so that a clock
signal can still pass through if it doesn’t work or having an SPI to interface with the individual
modules in case the wishbone bus fails. The results of these tests should allow for better utilization
of the open-source process for future users as defined earlier in Section 2.4.

31

Currently our design should follow all the eFabless rules for submission to allow it to be part of a
manufacturing shuttle, but some of the tests will not be able to be run until the full
implementation of our design is complete. Our current design also fulfills all the requirements
from our advisor and client in the form of the different modules we plan to implement.

4.3.3 Areas of Concern and Development

The primary concern at the moment is how ambitious the Voice Road Nosie Isolation module is to
implement in an ASIC. Our user space available in this framework is not very large, so we are
concerned about the feasibility of inserting a relatively large convolution into the area available to
us. This concern will be fully addressed when we attempt to synthesize our final design before
submission and see if the design fits in the user area, but we will be estimating the size of the
required multiply and add units prior to full implementation to make design tradeoffs on how the
convolution should be implemented. For example, if we find that we can fit 1,000 multiply units in
the ASIC user area, then we can do a large convolution with near-single-cycle latency, but if we find
that only 10 multiply units will fit, we can design a multi-cycle convolution which takes longer and
may not run at real-time, but will still perform an intense test of the ASIC hardware.

4.4 TECHNOLOGY CONSIDERATIONS

Another technological consideration to be made is that our open-source project can only be
provided through eFabless, meaning that if we have an issue with our final product we cannot go to
any other company or foundry to create our digital ASIC. One upside to this is that both our project
and others are required to be open source, meaning that we are contributing to a large library of
RTL designs that can be referenced if another company or foundry opened a similar experimental
service.

Another item that must be considered is the reliance on open-source software to complete this
product. As an open-source product, the software is not guaranteed that it will always be
functional. It is purely reliant on the unpaid maintainers to keep it updated and in a functional
shape. This will have an impact on our ability to complete and maintain our project.

4.5 DESIGN ANALYSIS

Our project is focused on testing the manufacturing limits of the eFabless platform. We initially
debated between creating a single coherent design or several smaller independent modules. We
concluded that by using a modular design, we will be better able to test different aspects of the
process. We can select which aspects we want to test, and if a manufacturing or design failure
occurs in some part of a module, we will still be able to test the other modules independently. This
was the main driving factor of why our group went modular instead of creating a singular more
complex project that could have more points of failure.

As we researched the Caravel Harness and previous projects, our group was able to brainstorm
ideas of possible modules and areas we would like to be able to test. From this we were able to
exclude some of the ideas due to hardware limitations (see section 4.3 above) and we were then

32

able to select the modules to include. We decided on six modules, further described in Section
4.1.4, to test aspects of the given Caravel Harness including the Wishbone test, Voice Road Noise
Isolation module, a test of the manufacturing capabilities of the standard cell library, and a custom
cell test. Lastly, we have both a Backdoor SPI to communicate with modules in case of failures with
the Harness, and a clock gating module to be able to turn off the clock signal to any of the modules
as clock gating was a significant area Dr. Duwe wished us to experiment with.

4.6 DESIGN PLAN

As described above, our design plan will fulfill the requirements for our users defined in Section
4.1.2:

Our Team

We have picked suitably complex modules to challenge us, yet also give us a reasonable chance of
success. We will fulfill our requirement of learning through the completion of these modules and
attempting to simulate and submit the final design.

Future Senior Design Groups

Our project’s design files will be available to future senior design groups to reference, and we will
leave a detailed bring-up plan with Dr. Duwe for a future group to use to finish testing our design
when it is returned in the future.

Research Teams

Our design files will also be accessible to research teams. Specifically, our clock gating module will
be of significant interest to low-power research groups, and our convolution will be of interest to
DSP-related research groups, fulfilling our requirements for research teams.

eFabless Open-Source community

As we submit our design, our files will be published to eFabless for the community to reference,
fulfilling our requirement to the community as a whole.

5 Testing
In this section, we sought out to create a comprehensive testing plan that would be able to
thoroughly test not only our basic designs on their own but also our final integrated product as
well. The focus was to create a testing system that would thoroughly verify individual modules as
they are written. This will ensure that each module's desired functionality is achieved individually.

From there, once each module has been verified to be functional, it will then be integrated into the
larger system. With the modules combined, we will then test that they both retain their own
functionality yet also do not harm other integrated modules.

Once we integrate every module, we will focus on the total system together and test that the final
test software can run and interact with all the modules. Lastly, we will then submit our design to

33

the eFabless precheck system that will test to make sure that our final design passes all their pre-
manufacturing tests. We believe that this testing plan will provide a comprehensive test of our
product and give it the best chance of returning from manufacturing fully functional.

5.1 UNIT TESTING

Each module will have a single test which covers the individual module on its own. For complex
modules (DSP Voice Road Noise Isolation), we will have more in-depth testing in each
subcomponent including the adders, multipliers, and RAM used in the final design.

These tests will be performed in RTL and gate-level simulation using the OpenROAD tools and
written in Verilog test benches.

5.2 INTERFACE TESTING

There are two main interfaces that the different modules in our design interact with. Those two
would be the integrated wishbone bus along with the backdoor SPI protocol. Our interface testing
will verify that each of the applicable modules is able to send and receive data over both bus
protocols. We will also verify that each of the modules adheres to the bus protocol strictly.

These tests will again be performed by RTL and gate-level simulations using the OpenROAD tools
written in Verilog test benches.

5.3 INTEGRATION TESTING

The critical integration paths in our design are the Wishbone bus, SPI bus, and GPIO usage. We
will ensure that each module has an independent address space which does not collide and run
each of the per-module tests on this integrated design to ensure nothing broke during integration
and each module can be accessed independently.

5.4 SYSTEM TESTING

For full integration testing, we will test all modules using a large test bench for the overall design
after final integration to ensure each part is working as we expect. We also have the ability to
simulate full C code (although it is super slow), so we have the ability to run our final test code to
ensure everything should function correctly when fabricated and returned to a future tester. This
will also test the clock gating to ensure that it is theoretically going to function with the overall
design as we expect.

34

5.5 REGRESSION TESTING

Due to the nature of testbench driven development in Verilog, we will be able to continue running
past test benches on previously tested components to ensure functionality does not break as we
seek to implement more complex functionality.

5.6 ACCEPTANCE TESTING

We will demonstrate that our design requirements are met by verifying the expected results from
our register transfer level and gate level simulations match the output of each testbench we have
designed. Each testbench will be designed to verify every functional requirement of the submodule
will be satisfied, while ensuring the submodule will not interfere with other designs in our user
area. We will also run our final user area wrapper against the eFabless precheck that is built into
the provided GitHub repository that we are working out of.

5.7 SECURITY TESTING

None of our submodule designs will be primarily security focused. As a development test of the
capabilities of eFabless, we are purposefully adding a backdoor SPI into the user area and are
attempting to ensure that we can inspect as much of the design as possible. From that perspective,
our design should be as minimally security focused as possible. However, there are security risks
from other aspects of our project. The tools we use are open source, so there are security
considerations that must be made there, but these are common and well-used programs and are
not a major concern. here will be some security risk from the fact that we will not have clear
documentation on the fabrication process that is being completed at the SkyWater foundry. Due
to this, more rigorous testing should be done post fabrication with the interfacing, including GPIO
and Wishbone tests. If this does prove to be an issue, we can utilize our own Backdoor SPI module
to bypass the provided serial bus interface.

5.8 RESULTS

As of now, we have successfully implemented and verified multiple RTL simulations across
different submodule designs. We were able to verify the waveforms in GTKWave for the sample
adder that was given to us by one of the previous senior design groups, to ensure our Caravel
repository was running properly for RTL simulations. We have also succeeded in generating
testbenches and waveforms for our own submodule designs, specifically the standard cell test and
shift registers which will be integrated into the Backdoor SPI module. To verify the results, we
compared the expected results to the actual resulting outputs using the waveform viewer
GTKWave. These detailed results can be seen below in Appendix 8.4.3.

35

6 Implementation

6.1 STANDARD CELL TEST

Current Status

We have looked at the cells available to us and the different categories they are part of, such as high
density or low latency. As part of the work on the SPI a 2 to 1 mux from the standard cell library has
been used and is part of Appendix 8.4.3,

Plan for Next Semester

Write the Verilog for the four and gates that are going to be tested and then verify through
simulation that is working as intended.

6.2 CUSTOM CELL TEST

Current Status

We have found an initial guide from another contributor who submitted a custom logic cell in a
previous MPW submission. We have read through the guide, and this appears feasible to
implement, but no implementation progress has been made.

Plan for Next Semester

We will use the example guide as a reference to learn the tooling, then explore what is possible
within these tools. Two possible ideas are a low-voltage retaining flip flop and a complex logic gate
such as an AOI. The number of pins used is flexible on this module, but should be kept small. This
will likely be tested using a Spice simulation.

6.3 WISHBONE TEST

Current Status

The Wishbone Bus test has been started, but the implementation has not been completed. We have
read through documentation on how the Wishbone Bus works, and have run the provided
testbenches which utilize the Wishbone Bus.

Plan for Next Semester

We will use the existing testbenches and assorted documentation to finish the implementation of a
Wishbone Bus test and test it to ensure the module works as expected by writing C code for the
harness MCU to be simulated in the tooling.

36

6.4 CLOCK GATING

Current Status

A design of the clock gating system with an override has been completed and has started to be
implemented.

Plan for Next Semester

Finish the implementation and thoroughly test it including the override to make sure that
everything works as to prevent this module from disallowing the clock signal to propagate through
it in the case of failure.

6.5 BACKDOOR SPI

Current Status

Near the end of the first semester, the module design and verification for the shift in and shift out
registers of the Backdoor SPI module have been completed. The test results for the shift in and shift
out registers can be seen in Appendix 8.4.3. The block diagram and schematic for the Backdoor SPI
module have also been developed. A robust description of the Backdoor SPI module is referenced
below in Appendix 8.4.4, describing design decisions surrounding the shift registers, clock
synchronization, and the external master SPI interface.

Plan for Next Semester

Next semester, the plan is to complete the Verilog for the Backdoor SPI module and verify it with
RTL simulations, similar to the shift in and shift out registers. Since the shift register modules are
already written and tested, there will be no other required submodules inside of the Backdoor SPI
module. After this, gate level simulations will be conducted for each of the three separate modules,
starting with the shift registers. When all tests have passed, the Backdoor SPI module will be ready
for integration testing with the other modules.

6.6 VOICE ROAD NOISE ISOLATION (DSP)

Current Status

The Voice Road Noise Isolation module has recently been fully defined. The module has had the
final algorithm selected to be implemented. The module’s internal components have also been
defined. With both of these defined the module’s functionality has also been determined.

Plan for Next Semester

For the upcoming semester there is much that is needed to be completed for this module. The first
item will be to write the Verilog implementing each of the subcomponents of the module. From
there the subcomponents will need to be tested and verified to be functionally complete. From
there the submodules can be compiled into a system together to implement the desired

37

functionality of the system. With the overall module completed the next step will be to write the
functional tests for the module. When the tests have all passed and the module is determined to be
functional it can then be hardened. From there the last step is to test the module’s gate level
behavior through more tests.

6.7 SUBMISSION

Plan for Next Semester

Once all the modules have completed their individual tests the integration process can begin. Each
of the modules will be compiled into one large system and routed together. With the fully
integrated design complete the top-level system tests can be written and applied to the design.
Once the design has been tested and verified to fulfil the requirements of the project the design can
be run through the eFabless precheck process. Once the design passes the precheck process it can
be submitted to the most recent Open MPW Shuttle.

6.8 BRING-UP PLAN

Plan for Next Semester

Once the design has been submitted for manufacturing, work can begin on compiling the firmware
to run on the device along with the bring up plan to fully test the manufactured chip. The firmware
will need to be written such that major changes will not be needed to be able to run on the
returned chip. The bring up plan will need to be written such that individuals with little knowledge
of digital design or the implemented design will be able to get the chip to function.

38

7 Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone
Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF RESPONSIBILITY

Below is a list of the responsibility areas for both the NSPE and IEEE Canon, outlining how each
Canon defines their code of ethics. Below, we outline how the IEEE Canon code of ethics differs
from the NSPE Canon.

Table 3 Areas of Responsibility

Area of
responsibility

Definition NSPE Canon IEEE Canon

Work
Competence

Perform work of high
quality, integrity,
timeliness,
and professional
competence.

Perform services
only in areas of
their competence;
Avoid deceptive
acts.

To maintain and improve
our technical competence
and to undertake
technological tasks for
others only if qualified by
training or experience, or
after
full disclosure of pertinent
limitations;

Financial
Responsibility

Deliver products and
services of realizable
value and
at reasonable costs.

Act for each
employer or client
as faithful agents or
trustees

To reject bribery in all its
forms;

Communication
Honesty

Report work,
truthfully, without
deception, and
understandable to
stakeholders.

Issue public
statements only in
an objective and
truthful manner;
Avoid deceptive
acts.

To be honest and realistic in
stating claims or estimates
based on available data;

Health, Safety,
Well-Being

Minimize risks to
safety, health, and
well-being of
stakeholders.

Hold paramount
the safety, health,
and welfare of the
public

To accept responsibility in
making decisions consistent
with the safety, health,
and welfare of the public,
and to disclose promptly
factors that might endanger
the public or the
environment;

Property
Ownership

Respect property,
ideas, and information

Act for each
employer or client

To avoid injuring others,
their property, reputation, or

39

of clients
and others.

as faithful agents or
trustees

employment by false or
malicious action;

Sustainability

Protect environment
and natural resources
locally
and globally.

 To accept responsibility in
making decisions consistent
with the safety, health,
and welfare of the public,
and to disclose promptly
factors that might endanger
the public or the
environment;

Social
Responsibility

Produce products and
services that benefit
society
and communities.

Conduct
themselves
honorably,
responsibly,
ethically, and
lawfully to enhance
the honor,
reputation, and
usefulness of the
profession

To treat fairly all persons and
to not engage in acts of
discrimination based on
race, religion, gender,
disability, age, national
origin, sexual orientation,
gender
identity, or gender
expression;

Work Competence

 IEEE states that we must only take on work that we are trained to do and qualified for and
must disclose when we may not be able to be up to the necessary standards

 The IEEE code covers the Work Competence section by ensuring that we know how to
properly preform the job we set out to do

 This differs from the NSPE cannon as the IEEE does not cover deceptive acts in this portion
and does not cover malicious intentions here

Financial Responsibility

 IEEE states that you should not accept any form of bribe on the job
 This code covers Financial Responsibility by guaranteeing that engineers will not accept

any financial gain at the expense of their employer or wellbeing of the public
 The NSPE cannon does not specifically state to reject bribes, and alludes more towards

acting in good faith when handling finances for a project

Communication Honesty

 IEEE states that we must be honest and accurately describe situations and problems based
on the information that we have available

 The IEEE code covers the Communication Honesty standard as it strives to provide honest
information to those that need it based on in information that they have available
themselves

 The NSPE cannon differs from the IEEE standards here as it does not require you to use all
the information available to you when communicating with others

40

Health, Safety, Well-Being

 IEEE addresses that engineers must take responsibility in decisions regarding the safety,
health, and welfare of the public.

 This IEEE code relates to the Health, Safety, and Well-being responsibility by ensuring
engineers will make decisions of good faith with the public’s best interests in mind

 The NSPE Code has a very similar statement, but lacks the statement to disclose any
factors that may endanger the public, like the IEEE code states

Property Ownership

 IEEE addresses avoiding malicious action that could harm property or reputation
 In NSPE, they specifically mention acting as a faithful agent as opposed to IEEE which is

more against malicious behavior. The difference in this could be interpreted as doing the
best that is possible as compared to just not doing something harmful.

Sustainability

 The IEEE addresses preventing harm to the environment and a responsibility to disclose
any factors that could pose a threat to the environment.

 In IEEE as compared to NSPE, they combine all health and safety factors of the public into
one point as a responsibility to protect safety health and welfare. NSPE does not have any
mention in the table for sustainability

Social Responsibility

 The IEEE code calls to treat everyone equally without regard to their background or other
personal factors

 The IEE code covers the Social Responsibility portion as it calls for everyone to be treated
equally and for the benefit for all

 The NSPE differs from the IEEE code as it calls for the person to enhance the honor of
engineering professions

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Below, we described how each of the referenced professional responsibility areas apply to our
project in a professional context. Each responsibility area is scored on a rating from LOW,
MEDIUM, to HIGH, with a HIGH rating describing that our team is performing well in the
respective responsibility area.

Work Competence

 Our team is performing well in the work competence context. We are working to learn the
process that our chip fabrication will use, and we are not claiming any knowledge that we
do not possess.

41

 We are also doing a lot of research into the resources the eFabless process gives us access
to so that we can become more qualified or ask other groups that have done this process
that have more experience than us.

 Overall, our team is performing well in this area and thus rates our proficiency as HIGH.

Financial Responsibility

 Financial Responsibility is very applicable to our project and team, due to our project being
open-source and free to submit.

 This means that we should not accept any financial gain or bribes, like both the NSPE and
IEEE canon warn against.

 Since we have not accepted any money and are using the open-source tools provided for
our project, we are performing with a HIGH proficiency.

Communication Honesty

 Overall, our team is performing high with communication honesty responsibility. This
responsibility is described as reasonable and realistic in the estimates of our project given
the total data.

 We have access to a Slack channel with different teams and collaborators that
communicate when the Open MPW Shuttle releases occur, which in turn could dictate
when we would receive our final product in the future.

 This is important so that a future senior design team could bring up and test our design
once the final product is shipped back.

 In the meantime, we are working with Dr. Duwe to provide timely updates and a realistic
scope of what we are interested in and capable of.

 Overall, our team is preforming well in this area and thus rate our proficiency as HIGH

Health, Safety, Well-Being

 Since all designs will be kept open source, there is less risk to the general safety of the
public.

 We are improving the area of digital electronics by silicon proving open-source designs,
that can itself go into improving lives.

 Overall, our team is performing adequate in this area, and thus earns a proficiency rating of
MEDIUM

Property Ownership

 Project ownership is an integral part of this project as a whole.
 As it is an open-source project anyone can use and modify our designs for the betterment

of digital design.
 Our project only requires that those who wish to use and adapt our designs keep their

iterations open source as well.
 This will create an ecosystem that encourages the sharing of ideas without them getting

locked behind some company’s proprietary IP.
 Overall, our team is performing well in this area and thus rates our proficiency as HIGH.

42

Sustainability

 The company that completes the fabrication, Skywater, is in the United States so there are
more environmental regulations that ensure they are following the Sustainability ethics
than compared to some other countries.

 Like the Health and Well Being responsibility area, our digital ASIC design could be seen
as more sustainable due to the open-source nature of the project, enabling other design
teams to pick up on where we started.

 Due to the project using open-source tools and being public online, we would rate our
Sustainability score as MEDIUM

Social Responsibility

 This project has a great impact in the realm of social responsibility.
 Our project utilizes a manufacturer in the United States that emphasizes working

conditions for their workers.
 This project is in line with the idea of creating better working standards for all and this is

an important factor as to why we chose this manufacturing process.
 Overall, our team is performing ok in this area and thus rates our proficiency as HIGH.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

One area that is both important and that we have been very proficient in is the responsibility of
property ownership. One of the most appealing factors of our project is that we will submit our
digital ASIC design to the Open MPW Shuttle submission, which will require us to submit our
project as open source. Being open source, our full design will be open for the public to view, edit,
and use for their own purposes. We also intend for our project to be used with future senior design
group(s), with a focus on bringing up the chip by implementing a tester circuit board and
embedded code. We have been working on our design with the fact in mind that it will be used by
others at a later date.

43

8 Closing Material

8.1 DISCUSSION

As of the end of our first semester in senior design, we have successfully verified RTL simulations
by viewing waveform outputs for a sample adder, SkyWater standard 2x1 multiplexer cell, and a
pair of shift in and shift out registers. All waveform results can be seen below in Appendix 8.4.3.
While the sample adder will not be included in our final design, it was useful in verifying that the
RTL simulations and GTKWave functioned as expected which helped us ensure we could use the
provided open-source tools that are required by eFabless. The SkyWater standard cell test will be
included in our final design, alongside the shift registers which will be implemented into the
Backdoor SPI module next semester. For more information on the Backdoor SPI module, refer to
Appendix 8.4.4.

8.2 CONCLUSION

For our project, we are creating a modular digital ASIC design using open-source tooling and an
OpenMPW Shuttle submission through eFabless. To confirm we meet our functional requirements
for each module, we have planned to include risk mitigation considerations in each modular
design. Through the work of an external SPI interface, clock gating, and a wishbone test, we will
ensure that as much of the chip will come back functional after fabrication at the SkyWater
foundry. During the second semester of senior design, we will focus on designing, verifying, and
integrating each submodule in the user area together into one functional ASIC. During this time,
we will also work to develop a bring up plan for a future senior design group to use our chip, after it
is delivered to us from eFabless and the SkyWater foundry.

44

8.3 REFERENCES

Technical References:

“Caravel user project,” Caravel User Project - CIIC Harness documentation. [Online]. Available:
https://caravel-user-project.readthedocs.io/en/latest/. [Accessed: 20-Apr-2023].

Efabless, “Efabless/caravel_user_project,” GitHub. [Online]. Available:
https://github.com/efabless/caravel_user_project/blob/main/docs/source/index.rst#user-
project-wrapper-requirements. [Accessed: 20-Apr-2023].

Efabless, “Efabless/mpw_precheck,” GitHub. [Online]. Available:
https://github.com/efabless/mpw_precheck. [Accessed: 20-Apr-2023].

“Open MPW Shuttle Program,” Efabless. [Online]. Available:
https://platform.efabless.com/shuttles/MPW-8. [Accessed: 20-Apr-2023].

“FRAM FAQs,” Texas Instruments. [Online]. Available:
https://www.ti.com/lit/wp/slat151/slat151.pdf. [Accessed: 23-Apr-2023].

“How much does it cost to have a custom ASIC made?” Electrical Engineering – Stack Exchange.
[Online]. Available: https://electronics.stackexchange.com/questions/7042/how-much-does-
it-cost-to-have-a-custom-asic-made. [Accessed: 2-May-2023].

eFabless. [Online]. Available: https://efabless.com. [Accessed: 2-May-2023].

“TSMC MPW Shared Tapeouts.” MUSE Semiconductor. [Online]. Available:
https://www.musesemi.com/shared-block-tapeout-pricing. [Accessed: 2-May-2023].

Related Work:

A. Petersen, J. Thater, M. Ottersen, and R. Dukele, “Senior Design Team sddec23-08 • RERAM
compute asic fabrication,” Iowa State University ECpE Senior Design. [Online]. Available:
http://sddec23-08.sd.ece.iastate.edu/. [Accessed: 20-Apr-2023].

C. Mantas, S. Szabo, C. Violett, and D. Ghauri, “Senior Design Team sdmay22-17 • Digital Chip
Fabrication,” Iowa State University ECpE Senior Design. [Online]. Available: http://sddec22-
17.sd.ece.iastate.edu/. [Accessed: 20-Apr-2023].

“MPW-1 shuttle projects,” Efabless. [Online]. Available:
https://platform.efabless.com/projects/shuttle/1. [Accessed: 20-Apr-2023].

T. Green, A. Sledge, K. Gisi, F. Zhu, and W. Zogg, “Senior Design Team sdmay23-28 • Digital Chip
Fabrication,” Iowa State University ECpE Senior Design. [Online]. Available: http://sdmay23-
28.sd.ece.iastate.edu/. [Accessed: 20-Apr-2023].

45

8.4 APPENDICES

8.4.1 Team Contract

Team Name sddec-06

Team Members:

1) Gregory Ling 2) Cade Breeding

3) Will Galles 4) Jake Hafele

Team Procedures

Day, time, and location (face-to-face or virtual) for regular team meetings:

Face to Face in Coover TLA on weekends. Once a week for an hour with our client (Dr. Duwe).

Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-
mail, phone, app, face-to-face):

Everything should be communicated through our shared Teams page with our client and advisor
Dr. Duwe

Decision-making policy (e.g., consensus, majority vote):

We will reach a consensus before major decisions because this affects everyone in the group.

Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

The scribe role will keep minutes and it will be saved in a document in a tab in teams weekly

Participation Expectations

Expected individual attendance, punctuality, and participation at all team meetings:

We will all come to all meetings on time unless notified previously.

Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Each week, we will delegate different tasks for each member, and each member will be responsible
for completing their tasks.

46

Expected level of communication with other team members:

We expect everyone will be responsive on MS Teams, as that will be our main method of
communication between our team and Dr. Duwe.

Expected level of commitment to team decisions and tasks:

Each team member will take on a portion of the work best suited to their abilities and everyone
would be engaged in directing the project and making decisions

Leadership

Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

Researcher, Clock Lead – Cade

Client Point of Contact, Custom Cell Lead – Gregory

Scribe, SPI Lead – Jake

Researcher, DSP Lead – Will

Strategies for supporting and guiding the work of all team members:

We will have 2 weekly meetings, one to meet with our client and update him on our progress, and
another to work together and ensure our jobs are completed.

Strategies for recognizing the contributions of all team members:

All contributions will be recorded on the team’s Kanban board on MS Teams.

Collaboration and Inclusion

Describe the skills, expertise, and unique perspectives each team member brings to the
team.

Will Galles - Embedded Systems Design, Digital Logic Design, C, VHDL, FPGA design
and implementation, Digital logic test and analysis.

Jake Hafele – PCB Design, PCB Testing, Digital Logic Design, VHDL, Verilog, FPGA
Design, Git, C

47

Gregory Ling - VHDL, C/C++, Verilog, experience using FPGAs in research scenarios
and working with Dr. Duwe for other projects

Cade Breeding - VHDL, C/C++, Git/Source Control Management, Verilog

Strategies for encouraging and support contributions and ideas from all team members:

Our group will meet once a week separately from the client to discuss our progress and work
together on the project. We will welcome contributions and ideas from all team members and
consider everyone’s ideas.

Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?)

Ideally the group member feels comfortable enough to bring it up to the group either through
teams or in person and we can start a discussion about it. If the issue is with another individual and
they are uncomfortable addressing, it with the group then they can bring it up with the scrum
master who can then address it with the team anonymously.

Goal-Setting, Planning, and Execution
Team goals for this semester:

 Prepare our digital design to be ready for the Open MPW Shuttle submission (estimated
for Summer 2023 as of now)

 Learn more about the digital ASIC design process through the Efabless tooling
 Test the design that was submitted and manufactured from the Dec 2022 Senior Design

group

Strategies for planning and assigning individual and teamwork:

Create a Kanban board in Teams that is open to all team members and our advisor/client

Strategies for keeping on task:

Set a concrete list of goals to complete when we hold our weekly meeting with our advisor/client,
Dr. Duwe

48

Consequences for Not Adhering to Team Contract

How will you handle infractions of any of the obligations of this team contract?

It will initially be brought to the team members' attention to allow them a chance to make up any
work that they are behind on and build a plan with the te8.4.3.am for how they will get to that
point.

What will your team do if the infractions continue?

Bring up the issue with the respective team members to our advisor, to get their opinion on how it
should be handled.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Jake Hafele DATE 2/19/2023

2) Gregory Ling DATE 2/19/2023

3) Cade Breeding DATE 2/19/2023

4) Will Galles DATE 2/19/2023

49

8.4.2 Module Design Specification

Backdoor SPI Interface

Primary Author: Jake Hafele

Inputs

 i_SYSCLK – System Clock
 i_BCLK – Bus Clock from Master
 i_SS – Bus Slave Select (Active-high reset)
 i_MOSI – Bus Master Out Slave In
 i_DATA_OUT[31:0] – Data to be sent to master SPI, loaded from other user modules

Outputs

 o_MISO – Bus Master In Slave Out
 o_ADDR[6:0] – Address to determine what the data is for
 REGISTER[6:3] - What data do you want from each module?
 MODULE[2:0] - Which module are you talking to?
 o_DATA_IN[31:0]: output data read from master SPI module, read by user modules
 o_DOUT_VALID: Flag that is asserted when DATA_OUT is ready to be read by

submodules

Internal

 s_READ: Are we reading (1) or writing (0) to slave SPI? Read from ADDR[7] after shifted
from MOSI

Basic Components

 One parallel-in serial-out shift register for MISO
 Two parallel-out serial-in shift register for MOSI
 Six D flip flops used to hold flags to address clock synchronization
 Basic combinational gates including 2 input AND, 3 input AND, and NOT gates

Implementation Description

The backdoor SPI interface will be a simple bidirectional 4-wire SPI bus on physical pins to the
modules we create elsewhere on the device. The SS pin will reset the SPI module when high. The
first 7 bits of transfer data from i_MOSI will be interpreted as the address from which to read and
write, with the following 8th bit for the read/write identification, s_READ. At that time, s_ADDR
will be set to the correct value to drive logic within the modules. It is expected that s_ADDR will
drive a large multiplexer between all peripheral values into the i_DATA_OUT field which must be
stable within 1 system clock cycle of ADDR or READ changing. The output of that mux will be sent
in the following 32 bits to the master SPI module regardless of the s_READ bit. If s_READ is 0, the
mux will be ignored, and the next 32 bits will be stored in DATA_IN. The o_DOUT_VALID flag will

50

be high for one system clock cycle at the end of transfer during which time the data is guaranteed
to be stable and the addressed module should act on the provided data.

Figure 5 External SPI Connection

Voice Road Noise Isolation (DSP)

Primary Author: Will Galles

Primary Reference: Issaac Rex’s EE 529 Speech Enhancement Project

Inputs

 PCLK0 – Clock input from clock gate
 Wishbone Bus
 Backdoor SPI

Outputs

 Wishbone Bus
 Backdoor SPI

Basic Components

 Convolution control unit
 Address up counter
 Address down counter
 N 16 bit multipliers
 32 bit accumulator

Implementation Description

The Voice Road Noise Isolation (DSP) module will implement a Weiner Filter to clean a noisy
audio signal to improve the underlying voice audio. This filter works by first creating a tuned filter
that rejects signal frequencies that are not typically found in the human voice while letting all
others pass through. This filter would then be applied to the incoming voice audio to perform the
voice isolation. There are two main ways to go about applying the filter to the incoming data. The

51

first method would be to first convert the filter to the time domain and then directly convolve the
filter with the incoming data. The second method would be to transform some window of your
incoming data into the frequency domain and then multiply it with the filter in the frequency
domain before performing the inverse transform to convert the data back to the time domain.

In the end we selected to pursue the direct convolution route as a way to cut down on the hardware
that we needed to implement. This allowed us to forgo the hardware to perform the Fourier
Transform as we could convert the filter to the time domain off chip. With a final approach now
decided we could focus on the implantation.

The module first begins with initialization where the filter is first loaded into the filter sram in the
user area. Next, we load the first data values in to completely fill our data sram with junk data.
Once both memories have been filled the initialization is complete and the module can begin to
operate. In the normal operation mode one cycle begins with one new data point coming in on the
wishbone bus. This new data point is loaded into the data memory at the location of the oldest
previous value. Once it has been loaded the convolution can begin. The module begins by pulling
the oldest data value and the last filter value and multiplies them together. The product is then fed
into the accumulator unit and then added to the previous sum. From there the second lowest data
value and the second to last filter values are then run through the same process. This continues
until we reach the newest data value and the first filter value. When their product is fed into the
accumulator the output sum is then sent back on the wishbone bus as our new output value. The
accumulator is now reset and then a flag is raised to let the processor know that it can send over a
new input value to the module. This process then continues indefinitely providing cleaned voice
audio data.

52

Figure 6 Voice Road Noise Component Diagram

Clock Gating Module

Primary Author: Cade Breeding

Inputs

 HARNESS_CLK – Harness Clock
 EXTCLK – External Clock
 Hardware gate override pin
 Hardware clock override pin
 Wishbone Bus
 Backdoor SPI

Outputs

 SYSCLK – System clock for all devices except wishbone bus (SPI bus)
 Wishbone Bus
 Backdoor SPI

53

 PCLK[2:0] – Individual Module Clock

Basic Components

 3-bit register for downstream module control
 Clock Gate for each downstream module
 Single Clock Mux between two input clocks

Implementation Description

Clock gating – Every PCLK has a bit in a register (0 = enabled, 1 = disabled), defaults on, hardware
pin override to turn all clocks on, accessible over SPI and wishbone. Every module clock comes
from the clock module. One (or two) input clocks available over hardware pins. PCLK2 is external.

The two input clocks (from harness and external) will be sent to a clock mux per peripheral clock
controlled by a bit in a register and sent through a clock gate for each module also controlled by
another register bit per module and out to the modules. If the hardware gate override pin is set, the
clock gates will all turn on, bypassing the control bits and the clock mux control line will be
overridden by the clock override pin

Standard Cell Test

Primary Author: Cade Breeding

Inputs

 A – Input 1 to standard cell AND gate
 B – Input 2 to standard cell AND gate
 SW[1:0] - Select line for 4:1 MUX

Outputs

 C – MUX’d output of one standard cell AND gate

Basic Components

 AND gate cell from four of the different Skywater standard cell libraries (inlcuding hd, sd,
md, and hdll)

 4:1 MUX from high density standard cell library
 Implementation Description
 Standard cell test – Test propagation delay and different libraries (hd, sd, md, hdll). 4

inputs A and B, SW[1:0], 4 AND gates from different modules share inputs and output to
4:1 mux and output to 1 pin. All pins are hardware, no registers and no SPI.

Custom Cell Test

Primary Author: Gregory Ling

54

Inputs

 Two inputs A and B

Outputs

 One output C

Basic Components

 One custom logic cell of our choice. Can also include a clock signal if that would be
interesting.

 Implementation Description
 Three pins, two input, one output, does something with those pins, some custom 2:1

lookup table or the like. Exact specification is yet to be determined as we explore what
might be possible.

Wishbone Test

Primary Author: Gregory Ling

Inputs

 PCLK1 – System Clock
 Wishbone Bus
 Backdoor SPI
 Outputs
 Wishbone Bus
 Backdoor SPI

Basic Components

 32-bit incrementor

Implementation Description

When the wishbone bus is written, counter value is set. Counter is continuously counting PCLK1
pulses, discarding overflow. When the wishbone bus is read, the current counter value is sent.

55

8.4.3 Testing Results

Shift In Register

The following waveforms show the testbench results for the successful shift in operations from the
previous shift in register testbench. As stated before, tests were conducted shifting in values of
decimal 100, 256, 10498, and hexadecimal 0x00000000 and 0xFFFFFFFF. The expanded bit vector of
o_Q demonstrates how the least significant bit is reset to 1 and propagates through the output as
the enable indicator. The other propagated bits are shifted in as the shift_in task begins to shift the
data contents from the I_D input, which would be the MOSI signal to the backdoor SPI module.

Figure 7 Shift in 100

Figure 8 Shift in 256

56

Figure 9 Shift in 10498

Figure 10 Shift in 0x0

57

Figure 11 Shift in 0xFFFFFFFF

The second set of tests that were verified with the shift in register were the cases where the enable
input was 0, to verify that no data from i_D would be shifted in. The following waveform verifies
that no bits were shifted into the o_Q output register for any of the following 32 clock cycles that
the enable pin was cleared to zero.

Figure 12 Shift in with enable low

Shift Out Register

The following set of waveforms depicts multiple shift out verifications with the shift out register
testbench. Since the 32 bits of the i_D signal would be shifted out continuously after I_START was

58

asserted, there were no cases to check with an enable signal during the middle of the shifting
process. The following waveform verifies that i_D is properly shifted out of the serial output o_Q
for values 0x64, 0x100, 0x2902, 0x0, and 0xFFFFFFFF.

Figure 13 Shift out 0x64

Figure 14 Shift out 0x100

Figure 15 Shift out 0x2902

59

Figure 16 Shift out 0x0

Figure 17 Shift out 0xFFFFFFFF

Adder

In the following results, the signals prev_result and wb_data_reg are added together and are output
on the signal rdata. This adder module was given to us by last semester’s design team to be used as
an initial test to verify our open-source tool flow would run and generate a waveform output.

Figure 18 Adder Results

Figure 19 More Adder Results

60

Standard Cell Test: 2x1 MUX

The following test results describe the waveform for a SkyWater standard 2x1 MUX cell. The inputs
A0 and A1 are the data lines, with S being the select line. When S is 0, A0 is routed to the output X.
When S is 1, A1 is routed to output X. Due to the combinational nature of the cell, each of the 8
possible outputs are given below with each possible 3 input combination. The signal OK is used for
error checking to verify the output X is correct after each combination, verifying the test and
standard cell functioned as expected.

Figure 20 Standard Cell 2to1 MUX Waveforms

61

8.4.4 Detailed SPI Module Implementation

SPI I/O Interface:

 MOSI: Master out Slave In, sends serial data FROM master TO slave
 MISO: Master in Slave Out, sends serial data TO master FROM slave
 BCLK: Bus Clock, driven from master SPI module
 SS: Slave Select, line for master to select which slave to send data to

Serial Peripheral Interface (SPI) is a synchronous interface, meaning that data from the master or
slave submodule is synchronized on either the rising or falling edge of the Master SPI’s clock,
BCLK. The Master Out Slave In signal, MOSI, is an output to the master SPI and an input to the
slave SPI. On the other hand, MISO is an input to the master submodule and an output from the
slave submodule. Due to the two separate serial data lines, the SPI protocol is full duplex, meaning
data can be transmitted from both modules simultaneously. The last signal in the SPI interface is
the Slave Select (SS) signal, which is an output from the master, and read by each slave SPI
submodule. When the SS line is cleared to zero, the connected slave submodule will be enabled.
With multiple SS select lines, it is possible to choose between communicating with multiple slave
submodules. Since the master SPI submodule drives the clock and slave select pins, it is only
possible for one master SPI module to be present in the system.

Figure 21 Master/Slave SPI Interaction

Master/Slave Clock Synchronization

One issue that we needed to consider with our Backdoor SPI module was handling metastability
and clock synchronization between two separate clock sources. Since we will be supplied a clock
from the external master SPI submodule, we will face the issue of metastability if unaddressed,
since the clock speeds of the external master clock (BCLK) and the system clock (SYSCLK) in the
user area of our chip will be different frequencies. If the edges of both clocks do not occur close
enough, then timing constraints on the second clock could be violated, where there is not enough

62

time for data to properly propagate and update before the next edge of the user area clock. Without
clock synchronization, the Backdoor SPI module may not be able to properly read the address or
data contents sent from the master SPI module.

To solve this issue, we decided to implement a common solution to metastability, which involves
inserting two D flip flops between the two clock domains. By using the receiving clock, or the slave
SPI clock SYSCLK from the user area, we can ensure that two clock cycles have to occur on the user
area side before the proper flags are asserted that data is received. Instead of using more D flip flops
to propagate the 7 address bits or 32 data bits from the master SPI module, we decided to instead
buffer the done indicator bit that would be flagged at the end of receiving data from the master SPI
module. The figure below demonstrates the connection between both SPI modules and the
metastable region.

Figure 22 Clock Synchronization Example

Design Summary

Backdoor SPI Module

Inputs

 i_SYSCLK – System Clock
 i_BCLK – Bus Clock from Master
 i_SS – Bus Slave Select (Active-high reset)
 i_MOSI – Bus Master Out Slave In
 i_DATA_OUT[31:0] – Data to be sent to master SPI, loaded from other user modules

Outputs

 o_MISO – Bus Master In Slave Out
 o_ADDR[6:0] – Address to determine what the data is for
 REGISTER[6:3] - What data do you want from each module?
 MODULE[2:0] - Which module are you talking to?
 o_DATA_IN[31:0]: output data read from master SPI module, read by user modules

63

 o_DOUT_VALID: Flag that is asserted when DATA_OUT is ready to be read by
submodules

The backdoor SPI interface will be a simple bidirectional 4-wire SPI bus on physical pins to the
modules we create elsewhere on the device. The SS pin will reset the SPI module when high. The
first 7 bits of transfer data from i_MOSI will be interpreted as the address from which to read and
write, with the following 8th bit for the read/write identification, s_READ. At that time, s_ADDR
will be set to the correct value to drive logic within the modules. It is expected that s_ADDR will
drive a large multiplexer between all peripheral values into the i_DATA_OUT field which must be
stable within 1 system clock cycle of ADDR or READ changing. The output of that mux will be sent
in the following 32 bits to the master SPI module regardless of the s_READ bit. If s_READ is 0, the
mux will be ignored, and the next 32 bits will be stored in DATA_IN. The o_DOUT_VALID flag will
be high for one system clock cycle at the end of transfer during which time the data is guaranteed
to be stable and the addressed module should act on the provided data.

Figure 23 Backdoor SPI Top Level

The following steps outline both a read and write process involving both SPI modules. A read and
write process will be initiated when the I_SS slave select input from the master SPI submodule is
cleared to 0.

Data Write Transfer from MOSI:

1. Receive addressing
o Serial shift in 7 address bits from i_MISO
o Serial shift in READ bit flag from i_MISO

2. Receive Data
o Serial shift in 32 bits of data from i_MISO

3. Confirm Clock Synchronization
o Wait 2 SYSCLK cycles to assert o_DATA_VALID flag to 1
o Wait 1 SYSCLK cycle, clear o_DATA_VALID to 0

64

Data Read Transfer to MISO:

1. Receive Addressing
o Serial shift in 7 address bits from i_MISO
o Serial shift in 1 READ bit flag from i_MISO

2. Confirm clock synchronization
o Wait 2 SYSCLK cycles to ensure address propagates to user modules for data

3. Send Data
o Parallel load i_DATA_OUT from user area MUX
o Serial Shift out 32 bits of data to o_MOSI

The following schematic depicts the proposed implementation of the Backdoor SPI module that
will be placed inside the user area of our ASIC. As defined above, the schematic utilizes two shift in
registers and one shift out register to handle the serial interfacing with the external master SPI
module. The final bit of the shift in registers acts as an enable bit, since the shift in registers will
reset the least significant bit to 1, which will stop the shift registers once the least significant bit is
shifted the proper number of times for each module. The D Flip Flops are used for the clock
synchronization and metastability solution. The status bits propagate through two D flip flops, and
a third flip flop is included so that the status bits will only remain asserted to 1 for one SYSCLK
cycle.

Figure 24 Backdoor SPI Schematic

The following table is an example of how the o_DOUT_VALID signal is asserted after all of the data
bits from I_MOSI are received. A similar process follows for the I_START enable bit for the shift out
register, while excluding the check of either a read or write.

Table 4 o_DOUT_VALID Truth Table

SYSCLK
Cycle

o_Q[32]
Data Shift
in Reg

o_Q
DFF0

o_Q
DFF1

o_Q
DFF2

s_READ o_DOUT_VALID

1 0 0 0 0 1 0

65

2 1 0 0 0 1 0

3 1 1 0 0 1 0

4 1 1 1 0 1 1

5 1 1 1 1 1 0

Shift In Register

Inputs

- i_CLK: System Clock Input. Synchronous shift
- i_RST: Asynchronous reset
- i_EN: If asserted to 1, o_Q shifted left by 1 bit. Otherwise, no shift occurs
- i_D: Written to LSB of o_Q to shift in from MOSI

Outputs

- [DATA_WIDTH : 0] o_Q: Parallel output of DATA_WIDTH bits

Parameters

- DATA_WIDTH: number of data bits to shift in, default value 32

The shift in register designed for the Backdoor SPI module is used as a serial in, parallel output
shift register to receive the incoming data from the Master SPI submodule on the MOSI input to
the slave module in the user area. The shift in register will update on the positive edge of the input
clock from the Backdoor SPI module, with an asynchronous reset. On the positive edge of the input
clock, the output register o_Q will shift left by one bit and write i_D to the least significant bit. The
shift in register will only shift left by one bit if I_EN is asserted to one on the positive edge of the
next clock cycle. If the enable input is not asserted, or zero, then no shift will occur and o_Q will
remain in the same state as the previous clock cycle. When the asynchronous reset is asserted, o_Q
will be assigned with 1. The intent is so that the initialized least significant bit can be shifted
throughout the o_Q register as 1, and act as an enable indicator outside of the shift module. The
most significant bit of the output o_Q will be read as an enable bit for the shift registers, to manage
the state of the incoming data. Due to this design, it enables us to create a shifting enable pin that
can shift in DATA_WIDTH bits, which can vary depending on if the master SPI is sending 7 address
bits or the following 32 data bits.

66

The following Verilog code defines the implementation of the shift in module:

Figure 25 Verilog implementation of N bit shift in register, shift_in_reg.v

Shift Out Register

Inputs

- i_CLK: System Clock Input. Synchronous shift
- i_RST: Asynchronous reset
- i_START: If asserted to 1, parallel load of i_D made. Otherwise, no load
- [DATA_WIDTH – 1: 0] i_D: Parallel data load to shift out serially to MISO

Outputs

- o_Q: serial shift out intended for MISO of SPI module

Parameters

- DATA_WIDTH: number of data bits to load and shift out

The shift out register is used to handle the MISO output from the user area to the master SPI
submodule on an external microcontroller. Due to this, the input data i_D takes DATA_WIDTH

67

bits, expecting 32, for a parallel load when i_START is asserted to 1. After I_START is asserted, every
following clock cycle for DATA_WIDTH clock cycles will shift the internal register s_DATA left by 1
bit. The output o_Q is assigned to the most significant bit of s_DATA, so that the most significant
bit is shifted out first, like how the most significant bit is shifted into the shift in register. When
I_START is asserted, the other internal register i_EN is reset to 1. Like the shift in register, s_EN is
shifted left by 1 bit alongside s_DATA, but acts as an internal enable to ensure the shift out register
stops shifting data after 32 bits. Since a 0 bit is shifted into the least significant bit, this enable
tracking is redundant with the current design, but helps to reduce risk if more complexity is added
in the future.

The functionality between the shift in and shift out registers are very similar but switch the serial
and parallel I/O between the data being loaded and the data being shifted out, to satisfy the
requirements of the SPI protocol between the MOSI and MISO signal lines between the user area
and the external SPI master.

The following section of Verilog code defines the implementation of the shift out register:

Figure 26 Verilog implementation of N bit shift out register, shift_out_reg.v

68

Research and Planning

The following images show research and planning for the Backdoor SPI module throughout the
first semester of our senior design process.

Weekly Design Meeting: 3/26/2023

Figure 27 Initial Brainstorm

Diagram after SPI Schematic Discussion: 3/27/2023

Figure 28 Rough First Schematic

69

Test Procedure

Shift In Register

To test the shift in register, the main requirement to fulfill was that data would be serially loaded
into the output register o_Q from the input i_D. To simulate testing the data being shifted in from
the master SPI module, we instantiated a shift in register with a DATA_WIDTH of 32 bits. So, this
meant that for each run of our test, it would take 32 clock cycles to successfully shift in the data,
with the most significant bit being shifted in first. The following initial begin block of Verilog
demonstrates using tasks to automate and integrate our Verilog testbench. Through the use of
tasks, we are able to make our testbench both more readable and easier to include more test cases.

Figure 29 Shift in tests

Multiple tasks are utilized in the shift in register testbench, including start() and reset(). The start()
task resets the shift in module and ensures that the input data and enable signals are set to 0, so
that they will not be driven before the first shift_in() task. The reset() task asserts the input reset
for one clock cycle, so that a module reset can asynchronously occur if called in the testbench or
any other task at a time. The s_status internal signal is initialized to 1 at the start of the test, and it
updated to 0 only if a test case fails, indicating a failed test at the end of the testbench.

70

Figure 30 Test driver

The following task, shift_in(), is the core of the shift in register testbench. The shift_in() task takes
two inputs, one for the full bit vector of the incoming data, and the other input being the enable
pin. While the intent for the shift register is to route the most significant bit of the output to the
enable pin outside of the module, we wanted to drive the enable pin separately to ensure full
functionality for these unit tests. At the beginning of the task, the reset() task is called, since the
shift in SPI module will always begin with a reset when receiving the address. After one clock cycle,
the enable input is asserted, meaning that every bit after will be shifted left by 1, assigning one bit
to i_D to write to the LSB of the output register o_Q. To achieve this in the shift_in() task, a for
loop is used to index between the data_in input, with a one clock cycle wait in between each
assignment, updated on the negative edge of the testbench and shift in clock. After 32 bits are
shifted, the enable input is deasserted to 0, and error checking is computed. If the output register
o_Q differs from the input data_in to the task, the error flag s_Q_error is asserted for one clock
cycle, and the s_Status signal is set to 0. This ensures that the final test result can be displayed, and
it is easy to interpret when an error occurs between multiple shift_in() tasks.

71

Figure 31 Shift in test function

Shift Out Register

The shift out register testbench utilizes similar tasks as the shift in register but modifies the main
shift_in() task as shift_out() by loading the parallel bits of data_in into i_D immediately, then
asserting i_START. The following 32 clock cycles are utilized to compare the serial data being
shifted out of the register from o_Q to the indexed bit from the data_in input to the task. This is
very beneficial since it ensures that each bit of the clock cycle matches the expected output and
raises the same s_Q_Error flag as the shift in testbench. Alongside this, the s_Status internal signal
is updated to 0 on a failed comparison, indicating that the test has failed at the end of the
testbench, in the complete() task.

72

Figure 32 Shift out test function

The testbench utilizes shifting out different values of 32 bits, including the common case of
multiple decimal values of 100, 256, and 10498. We also verified the shift out register was able to
successfully shift out a 32-bit vector of all zeros and all ones, signified by the task calls of
0x00000000 and 0xFFFFFFFF.

Figure 33 Shift out tests

